|
|
Line 2: |
Line 2: |
| {{Navbox punishers}} | | {{Navbox punishers}} |
|
| |
|
| <table class="waffle" cellspacing="0" cellpadding="0"><tr><th class="row-header freezebar-origin-ltr"></th><th id="1082528185C0" style="width:93px;" class="column-headers-background"></th><th id="1082528185C1" style="width:95px;" class="column-headers-background"></th><th id="1082528185C2" style="width:97px;" class="column-headers-background"></th><th id="1082528185C3" style="width:53px;" class="column-headers-background"></th></tr><tr style="height: 19px"><th id="1082528185R0" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s0" colspan="4"></td></tr><tr style="height: 19px"><th id="1082528185R1" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s1">FRAMES</td><td class="s1">STANDING</td><td class="s1">CROUCHING</td><td class="s2"></td></tr><tr style="height: 19px"><th id="1082528185R2" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3" dir="ltr">9F</td><td class="s4" dir="ltr">b1</td><td class="s5" dir="ltr">―</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R3" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3" dir="ltr">10F</td><td class="s4" dir="ltr">1d2, 1,2</td><td class="s5" dir="ltr">―</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R4" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3" dir="ltr">11F</td><td class="s4" dir="ltr">―</td><td class="s5" dir="ltr">ws4</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R5" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3">12F</td><td class="s4" dir="ltr">f1+2</td><td class="s5" dir="ltr">ws1,4</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R6" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3">13F</td><td class="s4" dir="ltr">b4,1</td><td class="s5">―</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R7" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3">14F</td><td class="s4" dir="ltr">3</td><td class="s5" dir="ltr">ws1+2,1+2</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R8" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3">15F</td><td class="s4" dir="ltr">b1+2</td><td class="s5">―</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R9" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3">16F</td><td class="s4" dir="ltr">uf3</td><td class="s5" dir="ltr">uf3</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R10" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s7" dir="ltr">21F</td><td class="s8" dir="ltr">ub3</td><td class="s9" dir="ltr">ub3</td><td class="s6"></td></tr><tr style="height: 19px"><th id="1082528185R11" style="height: 19px;" class="row-headers-background"><div class="row-header-wrapper" style="line-height: 19px"></div></th><td class="s3" dir="ltr">22F</td><td class="s4" dir="ltr"></td><td class="s4" dir="ltr">ws2(hold)</td><td class="s10"></td></tr></table></div>
| | {{PunisherTable|character=Xiaoyu |
| | |standing={{o |
| | <!--|{{o| moveId = Xiaoyu-1,d+2,1+2 | enemy = -10 }} copy this to add moves--> |
| | }} |
| | |crouching={{o |
| | |
| | }} |
| | |backTurnedOpponent={{o |
| | }} |
| | }} |